Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

For recordings in freely behaving mice, it is important to minimize the weight and torque applied by the cables. This is especially important for experiments that require natural behavior and becomes a real issue for channel counts over 32 where even light wire tethers become bulky.

The standardized interface cable for Intan RHD chips we use is ideal for this application. Thanks to the digital LVDS signal, only 12 conductors are needed for transmitting up to 64 channels of neural data. Cables that conform to this standard can be purchased from the Intan website in 3- or 6-foot lengths.

If you want something even more lightweight and flexible, it's possible to build your own cables. We did this by soldering wires to two 12-pin Omnetics PZN-12 polarized nano connectors. Here, we've used Cooner CZ 1187 wire, FEP Insulation 38AWG with 0.012" diameter and 0.720Ω/foot. This is the standard wire for analog tethers because it is very flexible and light, but also durable. The cables sold by Intan are 0.423Ω/ft for the LVDS and 0.172Ω/ft for ground and power, so we're at the upper end of the possible resistance values, but it seems possible that the 40AWG version of the wire could work for the LVDS pairs. For the GND and VCC traces using two 38AWG wires or going to a thicker wire with <0.2Ω/foot is recommended unless the tether is pretty short. This limit is more unforgiving if you're intending to run two headstages on one cable.

The wiring diagram of the cable is simple: There are two rows, each with 6 conductors. Each pair consists of a 'top' and 'bottom' conductor which must be wired straight to the same pair, except with the top and bottom cables switched at the opposite end. If one connector is laid facing the other back-to-back and one connector is upside-down, each pin needs to be connected with its opposite pin (see illustration below).